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ABSTRACT

The problem of narrow band interference while transmitting broad-band signals

like Direct Sequence Spread Spectrum is a common source of problems in Electronic

Warfare. This can occur either due to intentional jamming or due to unavoidable

signal sources present in the vicinity of the receiver. Lack of improper information

on these narrow band interferers makes it difficult to cancel them.

In this thesis the above problem is addressed by using an adaptive notch filtering

technique. Before adopting such a technique other methods like the Least Square

Estimator and the Maximum Likelihood Estimator were explored. However the Kwan

and Martin adaptive notch filter structure was found both relevant and suitable for

the problem of interest. The Kwan and Martin method has the difficulty of increasing

hardware complexity with number of notches. This makes it difficult to implement

in real time. A new algorithm was developed for the purpose of implementing the

structure in real-time. This new algorithm offers the same performance at reduced

hardware complexity. This algorithm was simulated and the results were presented. A

hardware feasibility is discussed by proposing a simple structure based upon existing

commercial signal processing chips.
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I. INTRODUCTION

A. MOTIVATION

The problem of suppressing narrow-band noise from a broad-band spectrum is

of considerable importance in the areas of Electronic Warfare and Anti Submarine

Warfare scenarios. In this thesis a workable solution is proposed for the problem cre-

ated by narrow-band interference. This solution will come in the form of an adoptive

digital notch filter. However before the details of the solution to the problem are

discussed, a brief description of the problem is given

1. Electronic Warfare(EW)

A typical EW scenario is given in Fig 1,1. In this scenario a transmitter

transmits information over a long distance. As an Electronic Counter Measure(ECM)

this information is coded and tza-Wmtted as a Direct Sequence Spread Spfttrum

(DSSS) signal. Inherently this signal is a broad-band signal. However at the EW

receiver there is often narrow-band interfereuce from such things as push to talk

systems(P1TS) that swamp out the receihed DSSS signal. Sometimes for reasons of

signal security PTS operating frequencies are varying with time. Under conditions

such as these the EW receiver cannot function effectively. For proper functioning of

the EW receiver we must enhance the received signal by selectively and adaptively

suppressizg these narrow.band signals.

2. Assumptions

This thesis addresses the problem arining at the tactical data communica-

tion link. In this EW scenario as dipicted in Fig 1.1 we are attempting to perform

signal analysis on a DSSS sigtal using a EW reciever. This EW receiver is not the des-
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ignated receiver and hence does not have the spreading code available. For this reason

the narrow-band interference severely limits the ability to determine the charaterstics

of the recieved signal such as carrier frequency, chip-frequency etc.

A typical DSSS system is the Tactical Information Distribution Systems

(JTIDS)[Ref. 7]. Data on such a link is generally in the form of digital messages.

A typical L-band (960-1215 Mhz) JTIDS allows transfer of digital data between any

properly equipped users within line-of-sight. The typical RF band-width required is

around 1OMhz.

Assuming a Superheterodyne EW-receiver, the band-width of the Interme-

diate Frequency (IF) need be only 10Mhz. This enables us to digitize the signal at

the base-band with a (20-50)Mhz Analog to Digital(A/D) converter. It is assumed

that this signal is digitized and converted into a floating point number. In this thesis

it is assumed that the floating point arithmetic is of sufficient precision that rounding

errors are not a significant problem.

B. PROBLEM DEFINITION

The signal described in section (I.A.3) can be thought of as a broad-band signal

with additive narrow-band signals occurring at arbitrary frequencies and times. These

narrow-band signals can be modeled as either pure sinusoidal signals, as outputs of a

narrow-band filter excited by white noise, or as any band-limited narrow-band signal.

'We shall assume that the signal yk is received by the receiver and is defined as

3

k -wk + +X1 k (1.1)

where 4k, the interferer, is either a pure sinusoid or a narrow-band -ignal whose

frequecy (t.- center frequency) can vary slowly with time. The term wk is the

" •broad-band D•SSS signal of ;nterest and 7k is White Gaussian Noise(WGN) with zero

mean and variance a2 N(0, o 1) The goal is to remove only the narrow-band interferers

3



and obtain the output (Wk + Yk) for further processing. A typir al spectrum for Yk ib

given in Fig 1.2.

In this thesis, the design for an adaptive digital filter that will achieve the goal

of removing narrow-band interferers from a broad-band signal of interest is developed.

This thesis is organized into five chapters. chapte: I is the introduction The chapter

II concentrates on building necessary background on such things as the Least Square

Estimator and Maximum-Likelihood Estimator. Chapter III briefly explains existing

methods of adaptive filtering with emphasis on adaptive notch filtering techniques

. The new algorithm (Ref. 26] developed for the purpose of addressing the current

problem of interest is also explained. Chapter IV is totally devoted to modelling

various signals required for testing. Simulation rtst,lts arc discussed a,,d presented.

Chapter V provides a brief survey of existing hardware components and a look at

possible hardware structures and their limitations. Chapter VI is conclusions.

4
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II. ESTIMATION TECHNIQUES

A. DIGITAL FILTERS

Digital Filters can be characterized by their impulse response, their trans-

for functlon, cr by a difference equation [Ref. 13] . A typical Infinite-Impulse-

Response(IR) iilter represented in difference equation form is given by

Xk = alXk-. + a2Xk-2 + a3Xk- 3 + bluk + b2uk-. (2.1)

while an Finite Impulse Response(FIR) filter is given by

zk = bluk + b2U&k-I + b3uk-3 (2.2)

where uk is the input to the rater and Xk is the output of the filter. x, and Uk are

the sampled vwlues of the continuous fun-Aions x(t) and u(t). By choosing T. as the

sampling time we notionauly write the discrete 'gnal as

xk = X(k) = x(k7.) (2.3)

Let X(fl) be the sptctruni of the signal Xk, where cl is the angular frequency

component present in the actual signal. For anal'si3 purposes consider normalized

frequency given as w = SIT.. With this definition we do not ha.e to use the actual fre-

quencies but only the normalized frequencies. As•,uming that tberc is no aliasing while

sampling the maviimum normalized frequency is 0.5 cycle/sa-iple or tr rad/sample.

1. Some Hardware Schemes

Fig 2.1 represents a conventional Direct Form II i.presentation of a digital

filter [Ref. 18]. However for high-speed throughput it is often necessary to have a

pipelined architecture.. FIR filters are highly amenable for pipeli,.in& thus giving a

high throughput rate for computations.

6
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2. Modelling Hardware Multiplier and Adder

Multiplication of two variables say b, and Uk in hardware can be modelled

as

bi*Uk = b* ukDj = blukDl (2.4)

where , is the hardware multiplier and • is the ideal multiplier and D1 is the propa-

gation delay associated with the multiplication. Similarly a hardware adder is desig-

nated as 4- while the ideal adder is given as + and the corresponding delay associated

with the adder is D2 . Then an addition of two variables uk and Uk-I can be written

as

Uk-4Uk-. = (Uk + u&-..)D (2.5)

Each of the previous devices can be incorporated into a pipeline digital filter structure

by following it with a synchronizing register. The clock period must then be less than

D + t, + t, where t, is the register setup time and t, the register propagation delay.

3. Pipelining an FIR filter

In this section we wish to realize

xk = b, * uk + b2 * u-, + b3 * u&_2  (2.6)

It is acceptable to have an overall delay DW , However it is desirable to minimize N:

k = D'V fb• uk + t2• uk-, + b3 * Uk-2} (2,7)

First associate one D with each multiplier and form real multipliers by the notation

D* = & Then we get

h, = D"' {fb D * uW + b2D * uk - 1 + b3D • u*-2) (2.8)

Now form the real multiplier

,D- 4b1;u& + bNuk - 1 + b6u&..-2) (2.9)

8



Now we use one additional D to associate with the adding of b2,uk-. and b3,uk- 2.

(Note: It is important to choose the most delayed values first in order to minimize

N)

k = DN-2 {Dbl;uk + D(b2•cUk-l + b3kuk-2)} (2.10)

Now form the real adder

ik = D N-2 {Dbluk + (b2;Uk-1+•;uk-2)j (2.11)

Now we use an additional delay D to associate with the final adder to get a real

adder:

=k = DN-3 fDb,;uk+(b2;uk-l43,u;--2)j (2.12)

Finally we choose the system delay such that D = z-1 and replace uk-2

Z-2u k and uk,_ = z-u),, thus we get

h - N'S {:)bl~uk&(z-%uk +z2&3;uk)} (2.13)

Now factor •-- out of the expression to obtain

lk Z S"fblUk+ý(b2Uk-4.:R'bUk)) (2.14)

Note that N = 2 is the ninimum possible value of N for a causal filter. Choose

N = 2 then

ik = {blu,.-(buk4---b;u)} (2.15)

Equation (2.15) is very convenient for pipelining and is given one to one ill Fig 2.2.

The above procedure is general for any FIR filter. Pipelining an FIR filter

results in maximizing the sampling or throughput frequency at the expense of a delay

or latency in the availability of the output.

9
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4. Pipelining 1IR filters

Pipelining an IIR filter is considerably more difficult than an FIR filter.

This is mainly because the delay in the availability of the output makes it impossible

to feed back output values with short delay as is required for the straightforward IIR

implementation. As an example consider a. simple 1st order IIR filter

Xk = a, * Xk-1 + Uk (2.16)

As in the FIR case we introduce a delay DN as follows.

ik = DN(aj * xk-1 + Uk) (2.17)

Now we use one delay to form the real multiplier:

xk = DN-I(a1D* xk-1 + Duk) (2.18)

= DN-l(al*^xk-. + DUk) (2.19)

We use one more D to form the real adder

Xk - DN-2 (aiD * Xk-.+Uk) (2.20)

Finally assume D = z- 1 and xk-1 = z- 1Xk then

-N+2 I I1•-

Xk = z ( *(ai^z xk+-z uk) (2.21)

z-N+ (a,4xk+uk) (2.22)

For 4k = xk, N must be zero. However N _> 1 is required for a causal filter.

Solutions to this problem exist. They use a higher order difference equation

representation of the filter with equivalent characteristics, so that feedback loop delay

greater than 1 can be tolerated. More details can be found in the literature [Ref. 14]

regarding pipelining of IIR digital filters.

11



B. SIGNAL CHARACTERIZATION

The signal Yk of equation (1.1) can be characterized either in the time domain

or frequency domain and the signal can be easily transformed from one domain to the

other via a linear transformation.

1. Time Domain Representation

In the time domain representation, the signal yk is modelled as the output

of a linear system which may be either an all pole or a pole-zero system [Ref. 13].

The input is assumed to be white noise but this input to the system is not accessible

and is only conceptual in nature. Let the system under consideration be

p q
Yk= aiyk-i + L bj+1 -k-j (2.23)

i--1 j=O

where 'Yk is a white noise and yk is the output of the system. Equation (2.23) also

can be represented as a Transfer Function(TF) (Ref. 171

B(z)
H(z) = B(2.24)

A(z)

or

X= A(z) (2.25)

where
p

A(z) = 1 - a,z-' (2.26)

and
q

B(z) = (2.27)
j=0

we define the parameter vector as

pt = [al,a2,'..., ap, bl, b2, ... ,bq] (2.28)

The parameter p completely characterizes the signal Xk The above system defined

by the equation (2.23) is also known as an Auto- Regressive-Moving-Average(ARMA)

12



model [Ref. 12],[Ref. 15]. It is conventional to denote a p poles and q zeros system

as ARMA(p,q).

2. Frequency Domain representation

The signal Yk of equation (2.23) can also be represented as a vector

YN = [Y1 ... YNI (2.29)

which can be transformed into the frequency domain by the DFT relation

9k= N- (2.30)

where W = e-qV' and j = v/'-'T. In general 9k is a complex quantity. However we

restrict our interest to the power spectrum a real quantity given as

Sk = Gk9k (2.31)

The series SN

SN = .S. IN] (2.32)

is another form of representing the signal and is designated as the power spectrum of

the signal Xk. Even though the signal in this domain is very convenient to handle,

computational complexity and other considerations limit its use for online application.

Also in this representation phase information of the signal is lost.

C. SPECTRUM ESTIMATION

1. Least Square Estimator

Consider the signal yk the output of a linear system excited by a white

noise as given by the equation (2.23). Now our problem is to estimate the parameter

vector p by obtaining successive measurements of yk. We shall define the vector

x • , Y-p,"Yk," ,'Yk-q] (2.33)

13



and zk = Yk so that the difference equation (2.23) can be rewritten as

zk = PtkXk (2.34)

an elegant solution [Ref. 21 for the above problem can be written as

5k = Pk-i + IIkXkek (2.35)

where

Hk = ( xt (2.36)

and

ek =k - P4.-lxk (2.37)

The block solution for the equation (2.34) can be also written in the form

p= Hk xkz (2.38)

Equation (2.37) can also viewed as ,rl, - ktk and this is represented in Fig 2.3.

Computing the matrix Hk via equation (2.36) is computationally inefficient

and a recursive solution via the matrix inversion lema [Ref. 3] is preferred and is given

by
Hr = HH&. - I + xjH*x 1 1, (2.39)

Staticians refer to the Hk matrix as the covarianct matrix while optimization pcople

refer to H, as the Ressian of the objective function, where the objective function is

given by
&

t (2.40)

Appendix A gives a computer program based on this approach that was used for this

thesis work to identify system parameters via Equations (2.35), (2.36), (2.37), (2.39).

The above method is known to work well as long as the mcasured value of the state

of the filter is free from noise. In the event zk is not noise free, estimates are known

to be biased.

14
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2. Maximum Likelihood(ML) Estimator

The ML estimator for the above problem is conventionally obtained by

considering a log-likelihood function [Ref. 16] an, .-ninimizing it. However for getting

a better physical understanding the approach given by Young[Ref. 21 will be followed.

Consider a system as

Yk = A(z) I k (2.41)

and an auxiliary system referred to as the model is given as

- b(z)1
S, A(z)- " (2.42)LA(z)J

and we define the function to be minimized as L = e2(p) where ek = YI - ik-

To minimize this function the derivatives and the Hessian of the function L where

L = (y& - ;ik 2 need to be obtained, First take partial derivative of L with respect to

each parameter. For example

OL = 2 (yk - &)(--) ,2c&(--) (2,43)

Vbb

The partial 1 can be obtained by differentiating equation(2.42) as

__ + 2,44)
a8  V } °j ([,-,,,- (24

= A[-) " ,(2.45)

Similarly the other partial U can be obtained as

:(2.46)

S- (,1, -)1 J&1 (2.47)

16



since '-{B(z)} = 0 as B(z) has no terms containing a1. Using equatioDs (2.45) and

(2.47) the partials are:

OX^ k[" = = (2.48)

8b,[[A(z)]J

OaY = [ y1 ] Yk (2.50)

(2.51)

by defining

pk = (aia 2 ,a3 ,bi,b 2] (2.52)

Xk = 4 - " u(2.53)

"Z. = Y-, -k-3, k, Uk-i] (2.54)

the Hessian may be approximated by:

11k= (•kXz) (2.55)

Using the above equations the parameter can be estimated via

Pk = Pk-1 + /HkXkek (2.56)

where y is the step size in incrementing the parameter vector. A block schematic for

the algorithm was given in Fig -2.4. A serious drawback of this method is the stability

while incrementing the parameters.

S. Other Methods

There are many other methods such " the Instrumental Variable (IV)

approach, the Approximate-Maximum-Likelihood (AML) Method and a combination

method IV-AML available in the literature [Ref. 2].
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D. SELECTION OF ESTIMATION TECHNIQUE

Before we select the appropriate method for the problem of interest, model-order

problems must be considered.

1. Model Order Problems

In the Least-Square Estimator for the parameter vector p of the signal

Xk we need to assume the dimension of p or the order of the system. Since the

system order is often not known a higher-order model estimate is assumed. Now we

investigate higher-order model fits for a lower-order data.

A Consider the system equation (2.23) with parameter given as

p = [1.7,-1.53, 0.648,1,0.6] (2.57)

For the above system a Random Binary Noise(RBN) was given as the input uk and

the corresponding output Xk is obtained. For the time series Uk and ?k an ARMA(6,1)

model was fit using the program given in the appendix and the parameter was esti-

mated as

pt = [2.26533,-2.79577,2.17249, -1.09877,0.446598, -0.110151,0.998175] (2.58)

Fig 2.5 gives the parametric spectrum for the above.

For the same data an ARMA(4,1) model was used and generating a pa-

rameter vector

p' = [2.16988, -2.41286,1.47436, -0.365412,0.999317] (2.59)

Fig 2.6 gives the parametric spectrum for the above values.

Lastly for the same data an ARMA(8,1) model was used and generating a

parameter vector

pt = [2.276, -2.8',5; ' 267, -1.282,0 703, -0.353,0.143, -0.0035,0.9999] (2.60)

19



Fig 2.7 gives the corresponding spectrum.

It is interesting to compare these with the actual parametric spectrum given

in Fig 2.8 For the sake of completion and comparison, the spectrum given in Fig 2.9

of the output time series x; computed via a DFT program is also included. This

simulation demonstrates that the existence of multiple solutions, hence an important

step in the estimation procedure is to choose an appropriate model order.

2. Choice of the Method

Since the filter hardware must be implemented in real-time at the frequen-

cies of 10 to 20 Mhz computational complexities must be kept to a minimum. These

methods although providing good performance, are not well suited to hardware im-

plementations. This motivates looking into new filtering methods.
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III. METHODS for FILTERING

A. FILTERING TECHNIQUES

Filtering in a broad sense is selectively suppressing a portion of the spectrum

of the given signal. In this chapter several filtering techniques are explored in the

light of the narrow-band interference problem in order to identify applicable filtering

techniques.

1. Filtering via FFT

Any given signal can be conveniently transformed into its power spectrum

via equation 2.31. Assuming the spectrum of the desired filter to be defined by wk.

The weighted output is given by:

Vk = $kWk (3.1)

and the corresponding filtered output yk is obtained by taking the inverse DFT of the

signal vk. A simple block schematic representing this idea is given in Fig 3.1. Details

of this approach are available in various references [Ref. 22].

Fast algorithms such as the FFT for computing the DFT make it possible

to do the above process in real time by using dedicated hardware. Honeywell makes

the HDSP66110 and HDSP66210 Digital Signal Processing chip pair which are ideally

suited for these applications. This chip pair can perform a single complex multiply in

40ns [Ref. 28]. However the problem of filtering adaptively [Ref. 10] (i.e varying Wk

according to a criterion) demands more computing power which can be obtained by

augmenting the DSP chip pair with a processor like the R3000 which has a Reduced

Instruction Set Computer(RISC) architecture with a high instruction execution rate

of approximately 25 Million Instructions Per Second(MIPS) [Ref. 27].
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2. Recursive DFT

Implementation of a higher order FIR filter using a recursive DFT [Ref.

23],[Ref. 24] is also very convenient for eliminating narrowband interference. The

basic concept is that the FIR filter is expressed as a product of two filter sections.

One section is a filter with its zeros being equally spaced on the unit circle. This

is achieved by a delay. The second section is a pole-producing section. Pole-zero

cancellation results in the desired FIR filter. More details can be seen in the references

[Ref. 23],[Ref. 24].

3. Adaptive Filtering

Adaptive filters can be placed into four classes based upon the choice of

the training sequence and the reference model for adaptation. Simon [Ref. 21]has

classified the Adaptive Filters into the following four classes

* Identification - Class I

* Inverse Modelling - Class II

* Prediction - Class III

* Interference Canceling - Class IV

Fig [3.2 - 3.5] give the block schematics of the various classes of adaptive

filters. In our problem, the reference model is naturally a narrow-band bandpass filter

since the interference signal is a narrow-band signal. The class of filtering that best

suits our problem is a combination of Class III and Class IV type of filter [Fig 3.4

and 3.5]. This logically points to an adaptive notch filter. Due to apriori knowledge

of the interference signal, only the parametric approach was. However the DFT-

based techniques may also offer a good solution and should be the subject of future

investigations.
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B. ADAPTIVE NOTCH FILTERS

Notch filters for removing multiple narrow-band interference can be categorized

into four broad categories illustrated in Fig 3.6 through 3.9. The first two categories,

Figures 3.6 and 3.7, are cascaded second order notches with each second-order section

removing one frequency. The next two categories,

Figures 3.8 and 3.9, are higher-order notches that eliminate multiple frequen-

cies. In all of the categories, it is possible to use FIR filters (i.e all zero filters) which

are easily pipelined and can be made truly linear phase. However, IIR notch filters

require substantially fewer multipliers and adders than FIR notch filters. Thus IIR

pipelining may become an important issue. In this thesis we limit our discussion only

to the first two categories illustrated in Figures 3.6 and 3.7.

1. Second-Order Cascaded Notch Filters

The second-order notch filter is used in cascade and in-line with the signal

as shown in Figure 3.6. The transfer function for such a notch filter is given by Kwan

and Martin [Ref. 8] as:

H(z) W H-i,(.) (3.2)
I k, ( k + -') +(1- k-a):

k-2 (3.3)

2 - k2  1 - 22-k ,& )0.Z + -

- 2 1 - (2 - k2 - k1)- +(- k)" (3.4)

For arbitrary values of k, and k2, this is a symmetric notch filter with unity

gain at DC and the Nyquist frequency. If k2 is kept constant, then the 3db notch

width is also kept constant. Thus k, may be adapted to remove one narrow-band

signal. A cascade of such filters can be used to remove multiple narrow- band signals

[Ref. 8]. Constants k, and k2 are related to the pole radius r and the normalized pole
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frequency OP as

k2 = (I r 2 ) (3.6)

k, = V/ ; 12 - 2rcosO. (3.6)

It is important to bear in mind that the above transfer function has unity gain at

BP,.i. =2arcsin{ f k } (3.7)

which is different from Op [Ref. 8]

2. Second-Order Cascaded Signal Canceler

The cascaded second-order signal canceler approach shown in Figure 3.7

has the advantage that the desired signal does not pass through the adaptive filter.

Instead, the band-pass filter is used to detect the narrow-band signal which is then

subtracted from the desired signal. A constant 3db bandwidth notch can be achieved

by selecting a band-pass filte, with the transfer function:
Hb, (z) = k2(l - z- 2 ) (3.8)

2D(z)
N(z) (3.9)
D(z)

where D(z) is the same denominator as HN(z) in equation (3.4) The signal-canceler

structure is also nice for adaptation because it is relatively easy to generate sensitivity

functions which are related to the gradient of Hbp(z) with respect to the frequency

parameter ki. Figure 3.10 shows the block diagram of an adaptive version of this

filter. The sensitivity function s(n) is obtained by differentiating the error signal

e(n) with respect to the parameter kj. This can be easily derived by noting that

e(n) = x(n) - y(n) and
a9-Tn) =- o (3.10)
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to get the above partial derivative we consider

y(n) Hbp(z)x(n) (3.11)

N(z)
- x -• (n) (3.12)

D(z)

the above equation (3.12) can be easily differentiated with respect to ki by using the

equation (2.47) to obtain:

• ~oy(n) __ _ r (z) o.1~l
Ok" = [D(z)]2k,1J x(n) (3.13)

by recognizing that Hbp(z) =N() from equation (3.12) the above equation can be

written as
-y(n) Hb (z 2kz-1) 3 (n) (3.14)

Oki D(z)

and by defining
2klz- 3.5

H.. (z) = D(z) (3.16)

we get the sensitivity function as

•()= Oe(n)_
.s(n) = H,(z) = Hbp(z)Ho,(z) (3.16)

The equation (3.16) is given as a block schematic in Fig 3.10. The parameter k, may

then be adapted by the formula:

s(n) (.7

ki(n + 1) =k(n) - ye(n) is() (3.17)

a. Computing I1s(n)11 2

Ideally IIs(n) 112 can be calculated by the relation

IIs(n)ll2= E s(i)2  (3.18)
ifn-N
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The above scheme computes the average of the past N samples. However a weighted

average of the past samples with highest weight for the recent sample can be done

quite easily by a first-order low pass filtering [s(n)]' as iollows:

Vn = v- 1 A + (1 - A)s 2(n) (3.19)

However the above lowpass filtering can also be carried out by a second order filter

such as:

=r-b_(1.-2z 1  -2 [+(z)]2 (3.20)

"= -- l -(2co.-,.(FiO)z + ±Z2)] [S(n)]2 (3.21)

Yet another way to estimate IIs(n)112 i simply:

N

n= [s'(n)]2 (3.22)
i-1

the above form is defined as zero order forgetting. It should be noted that equation

(3.21) was used by Kwan and Martin [Ref. 8).

C. MULTIPLE NARROWBAND SIGNAL SUPPRESSION

The second-order implementations of section (1.) and (2.) offer considerable

advantage both in hardware complexity and in adaptive performance for multiple

narrow band signal suppression [Ref. 8],[Ref. 25],[Ref. 26].

1. The Kwan and Martin Filter

In a recent paper by Kwan and Martin [(Ref. 8], the problem of detecting

and enhancing sinusoidal signals in the presence of noise is addressed with a cascads

of IIR adaptive notch filters which are used to eliminate the sinusoids. Each of the

sinusoids is eliminated by a bandpass filter whose output is an enhanced version of

one of the sinusoids. Hence this remarkable structure can perform both tasks with a
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single adaptive filter configuration which is shown to be highly robust and performs

extremely well.

The major disadvantage of the Kwan and Martin structure is that the

number of biquad sections needed in the adaptive filter configuration is given by

N(N+3)/2, where N is the number of sinusoids to be detected and removed. This

becomes impractical in real-time situations with more than 4 sinusoids due to the

geometric increase in the required hardware.

a. Kwan and Martin Structure

The Kwan and Martin structure consists of a cascade of IIR notch

filters one stage of which is shown in Figure 3.11. Each stage consists of a bandpass

filter with zeros at DC and the Nyquist frequency and unity gain at its peak frequency

wi. Such a filter would have the following z-domain transfer function

1-7r? 1 _ Z-2

' '"'2 1 - 2ricosOiz- 1 + rz-2  (3.23)

where

ri =pole radius of the i-th section

6, 2irwi/w.

w= peak frequency of the i-th section

w,= sampling frequency

Kwan and Martin identify two different methods for adapting the

filter. Most of their derivation is based on what they call the constant bandwidth filter

in which the pole radius ri is a constant and only the frequency wi is adapted. An

alternative approach which keeps a constant Q is also discussed in Kwan and Martin

paper. In addition, Kwan and Martin select the adaptive quantity in such a way that

it is fairly easy to determine the notch frequency from the adaptive parameter. From
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Figure 3.10, we see that the notch filter for each section is the difference between 1

and the bandpass filter, hence:

H (z) = 1 - Hg,(z) (3.24)

b. Calculation of the gradient

The basic structure of the Kwan and Martin adaptive filter shown in

Figure 3.12 is a cascade of N sections of the form of Figure 3.7. The overall transfer

function is given by

NT(z) = IH•N(Z) (3.25)

i=1
N

-- - Hi-H ,) (3.26)
i=l

Kwan and Martin choose as their objective function J(z) the square

of the output of the final stage of the cascade:

J(z) = {El(z)}2  (3.27)

= [T(z)]'[X(z)]' (3.28)

Hence, the gradient of the objective function J(z) is given by

) = 2EI(z)x(• ) (3.29)
Okj Okj

Thus in order to find the gradient with respect to the adaptive pa.

rameters k, , we must take the partial derivative of T(z) with respect to each kj

OT(z) rN OH (z)
j alHtz) • (3.30)

36



to N N -

N)
0 to

CL CL

I I 1 ,

CCL

NN

CC
C1z

L . ft. 
.

37IC~



From equation (3.24) we have

OHqN(z) _ -[1 H.(z)] (3.31)
a k- Oki

_ OH•,(z) (3.32)

ak3

Using the rule for differentiation as given by the equations (2.45) and (2.47) and from

equation (3.23) we have

'OHN(z) _ -2k-z-'Okj~ =-~ (Z) (3.33)
e~k ~ -IJ6 (z)D(z)

= HI(z)H.'(Z) (3.34)

where D(z) is the denominator of H4l. H~j is given by the equation (3.15).

Substituting equation (3.34) into equation (3.30) we obtain the over

all sensitivity for the jth k, parameter as

OT(z) N
--"= rIHN~(Z)H4(z)H~,(z) (3.35)

N-2N
= [fIU ()~H () 4(z)H .(z (3.36)

By recognizing that

Y3 (z) = [n W)Hi] (3.37)

and by substituting equation (3.37) in the equation (3.36) we get

,OT( L) H 2() (3.3S)

Figure 3.12 shows the Kwan and Martin realization of the complete

adaptive system, The difficulty in the Kwan and Martin approach is in the generating

of the product of notch filters without the notch filter j, as required in equation (3.36).

To generate this product for each section, would require N - I biquads per section
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resulting in a total of N(N - 1) biquads just to generate the product. Kwan and

Martin are able to reduce this by using the output of the bandpass filter as the input

to their cascade via equation (3.37). Since this output already has (j - 1) of the

required Hk,(z) factors in it, only (N -. J) additional biquads are needed for a total of

0.5(N 2 - N). Adding this to the N biquads required to realize the cascade of notch

filters and the N biquads required to realize the Hj(z) factors, yields a total number

of biquads given as 0.5(N + 3)N.

2. The New Structure

Figure 3.13 shows the improved adaptive notch filter structure [Ref. 25),[Ref.

261. The key to the improvement is the recognition that the output El (z) = T(z)X(z)

for the cascade of the notch filters can be written both as a product of the individual

notch filter section transfer functions Hý(z) times the input and in terms of the input

X(z) minus the outputs Y4(z) of the bandpass filters

EI(2) =T(r)X(-,) (3-39)

=X(.-) (3.40)

= X(Z) - (, Y(:)) (3.41)

To get the product of HI(.-) without the term i = j as required it. the

equation (3.36), we may use equation (3.41) to simply add back the term Y'(i)

=H4,(Z X(Z) X(2) - Y'(*) (3.42)

= + (3.43)

Figure 3.13 makes use of this fact to generate the gradient needed for the
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adaptive process. From the Figure 3.13, we can see that the total number of biquads

required is N for the cascade of notch filters plus 2N for the Hi (z)H•(z) required for

adaptation, minus 1 at the last stage, since the last stage does not need the extra

Hbp(z)). Thus we have the number of biquads required in the new structure is (3N-1).
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IV. MODELLING and SIMULATION

A. MODELLING OF SIGNALS

In order to test variotus algorithms and to evaluate their probable performance

in the real environment, it was necessary to develop a meaningful simulation of the

real situation. To achieve this, the following four testing categories were developed:

(i) Sinusoidal signals vwith white gaussian noise

(ii) Narrow Band Noise with white gaussian noise

(iii) Bi-Phase Shift Keying (BPSK) sequence

(iv) Frequency Shift Keying (FSK) sequence

1. Sinusoidal Signals

In order to generate sinusoidal signals with minimum computational burden

placed at different frequencies -',, a second order AR process

4 2c= s(Os)4..., - -k-2 (4.1)

was used. Initial conditions are very important and they are chosen such that _ = 0

and x-2 = -sin(60) giving a unit amplitude sinusoidal signal. The 0j value is between

0 to 180 and n is the number of frequencies desired. The required signal vA, needed

to input into the adaptive algorithm is given as

Yi& = + Oy& (4.2)

where - is a white gaussian noise N(0, &a).

2. Narrow Band Noise

The narrow band noise signal is generated using the difference equation

z4 = 2rcows(6j)4. -'r x-2 + u' (4.3)

42



where 6, decides the placement of the noise in the spectrum and r controls the band-

width of the noise. The u' is simply a uniformly distributed noise taken at different

instants. The desired signal Yk is obtained via

i=n

3. Bi-Phase Shift Keying Sequence

The generation of BPSK signal has three distinct three p.rts:

(i) Generation of Random Binary Sequence(RBS) is achieved by passing

uniformly distributed noise through a hardlimiter (An important note is that the

interval between the two consecutive bits of RBS is T);

(ii) Another sequence of binary numbers is a spreading code or sequencx.

The specific sequence used in a given communications system is normally not available

to anyone but to the designated receiver, (In this particular simulation we have

generated the spreading -sequence by passing uniformly distributed noise through a

hardlimiter. The bit interval is -I);

(iii) Phase encoding (i.e.) mapping the given binary signal which is the

eclusive or of (i) and (ii) as 0 or r at appropriate sample time.

The outputt of the fir'st hardlimiter is sto-ed in an array x. Output of the

second hardlimiter is stw~ed in the array y This information is retrieved by a subtle

use of the array index given as i = kfý where i is the index, k is the discrete sample

number and fb is the bit rate of the intelligence. Similarly another index j is generated

using j = kf, where f, is the chip frequency. Generation of the indices is the keyj

thing in this simulation. The desired signal now is given by the equations

S= Acos(2wfok + , ) (4.5)

4k = I •(D X vU)Ir (4.6)
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p=T1

ak- =•EW (4.7)
p=1

where i and j are indices of the arrays as defined earlier. It is an important point

to note that the characteristic of the signal wp are defined by the parameter p

{fof f 1, .

This signal is not really a simple BPSK signal but it has an additional fea-

ture of spreading the spectrum by controlling the chip-frequency and carrier frequency

and information rate. A block diagram of the scheme is given in Fig 4.1.

The desired signal yk is given by:

YA = Ok + 1k (4.8)

where ak is the set of narrowband BPSK signals placed at different places in the

frequency spectrum and Ok is the broad band BPSK signal generated for a specific p

value,

4. Frequency Shift Keying Sequence

Generating this sequence needs a random binary intelligence signal. This

was once again is achieved by passing a uniformly distributed noise through a hardlim.

iter. The output of this hard limiter stored in an array x. An index i is chosen such

that i = kf4 where ft is the baud-rate of the information and k is discrete sample

aumber, Now the desired signal is generated via

S= 2cos(OO)sA- - sk- (4.9)

= a+h(i) (4.10)

A= +=1, (4.11)

where 0 is the carrier frequency and 6 is the depth of the frequency modulation.

Initial conditio!:s are very important and they are chosen such that s3- = 0 and

3-2 = -4i"(6) giving an unit amplitude sinusoidal signal.
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B. SIMULATION

The adaptive digital filter algorithm as described in the earlier chapters is sim-

ulated and tested using synthetic data. Simulation was carried out on a VAX 11/785

computer using Fortran 77. Listing of the program used is enclosed in the appendix.

The adaptive filter parameters of interest are

(a) Sharpness of the notch filter defined by pole position (r2 = 1 - K2)

(b) Step size in the parameter update procedure (ys)

(c) Time constant of the fading filter (A) ( refer to equa'ion 3.19)

(d) Model order (N= # of 2nd order filters)

(e) Order of the incoming signal or number of interferers (m)

1. Kwan & Martin Algorithm

In simulating this algorithm, the most important thing is the implemen-

tation of the notch filter. Fig 4.2 gives the structure of the algorithm. Let x(n) be

the input to the Adaptive Filter and e(n) the desired output. This desired output is

obtained by passing the input x(n) via a cascade of N notch filters as

e(n) = {H(z)l'-VN... H (z)}n() (4.12)

Output at the intermediate jth section of the band-pass filter is designated as yj(n)

as shown in Fig 4.2 Then the sensitivity of the x, parameter, is obtained by passing

this y!(n) through another cascade of (j - 1) notch filters given as

si (n) = {f H .J 1 ., . HN'll} yij(n) (4.13)

The filter transfer functions Ht.(z) and I1,* were defined in the earlier chapter by

equations (2.21) and (2.15).
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2. The New Algorithm

The primary difference between the New Algorithm and the Kwan and

Martin algorithm is in the method of obtaining the sensitivity of the jth coefficient.

This difference can be seen in the Fig 4.3. The output yI(n) at the jth notch Fig 4.3.

filter is added to the over-all output e(n) and this summed output is passed through

a cascade of only two filters as shown in Fig 4.3 and can be given as

s tn) = [HHP,]j {e(n) + y3(n)} (4.14)

3. Forgetting Filters

For parameter incrementation via equation (3.17) we need to obtain IIs2(n)JI.

This could be achieved by

a) Zero order forgetting asing equation (3.22)
b) 1st order forgetting using equation (3.19)
c) 2nd order forgetting using equation (3.21)

4. Stability

The parameter incrementation given by the equation (3.17) can be recast

by using either of the forgetting filters given above as

' I /[vi-')s'(n)e(n) (4.15)

It is very important to note that the above equation (4.15) has a close resemblance

with the ML Estimator. In the MLE case the stability while incrementing the param-

eter is an important factor. A similar problem exists in the current incrementation

procedure but the problem is solved by a suitable choice of parameters and modify-

ing the incrementation procedure by adding an additional factor to equation (4.15)

as follows:

, - +e(n)s'(n) I __ ,,_+__ I (4.16)
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This modification also protects against possible overflow or underflow while computing

[v-T'. In addition simulations indicate that in the case of zero-order forgetting, this

factor is required in order to obtain convergence. When Vm.n and Vm. are zero and

infinity respectively, equation (4.16) reduces to equation (4.15).

In this incrementation procedure two forms of the denominator polynomial

of the Hbp(z) were considered:

D'(z) = 1 - (2 - k2 - k')z-1 + (1 - k2)z- (4.17)

and

D'(z) = 1 - 2xcrz-' + r2 z-2  (4.18)

where iK = cos(Oi).

While using the incrementation procedure, under transient conditions poles

of the D'(z) cross the unit circle causing instability problems. This condition was

averted by checking the pole position after incrementation and if unstable then in-

crementation is modified. Checking this condition for Di(z) given by equation (4.17)

calls for solving a quadratic equation at every parameter increment and examining

the pole position. However this check is very simple for Dt(z) given in equation

(4.18), since we need only to check Ki by maintaining <ic 1 1. Furthermore the

value of r must be positive and less than unity for stability. The choice of the r is

very important for proper fast convergence. Fig 4.4. shows the frequency response of

band-pass filter for different values of r The 3dB band-width of the band pass filter

is related to r and is given [Ref. 29] by

Band - width = cos-1 2 r{ } (4.19)

Note that under limiting conditions, the band-width is essentially zero. In this simu-

lation it was assumed a value of r as 0.95.
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A large number of simulations [Ref. 29] were carried out using sinusoidal

inputs with and without noise for different m and N values. In these simulations

the denominator polynomial used was given by equation (4.18). The results were

tabulated in Table 3.1. From Table 3.1 it is seen that the choice of the step size is

an important factor and step-size must be optimized for a specific number of sections

N. The values of v,mi,n and v,,, did not pose any problem while incrementing using

1st order or 2nd order forgetting filters. It seems that a 1st order forgetting filter is

more effective than either zero-order or a 2nd order filter.

After fixing the values of i and A the algorithm was tested using Narrow

Band Noise signal yk for its performance. This signal was used only to tune the value

of r (i.e. sharpness of the notch filter). The following simulation results are based on

parameter adaptation for the D'(z) given by equation (4.17).

5. Response for Sinusoidal signal

A sample simulatior output due to sinusoidal signal was shown in Fig [4.5

"- 4.7]. The input signal is composed of 3 sinusoids with normalized frequencies W30fo,

82--f, and 0'f, and WGN with a = 1. The spectrum of this signal is shown in Fig

4.5. After passing this signal through the adaptive filter we could see that interferers

were removed and only the noise was left behind. This is clearly shown in Fig 4.6.

The adaptation process is shown in Fig 4.7.

6. Response for Narrow Band Noise

In this testing category sinusoids were replaced by narrow-band signals.

These signals were generated via equation (4.4). Superimposed on this signal, WGN

with a- = 1 was added. A typical spectrum of this signal is shown in Fig 4.8. This

signal was passed through the adaptive filter and these narrow band interferers are

notched out and only WGN is left out as shown in the Fig 4.9. Fig 4.10 shows the

corresponding parameter convergence.
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7. Tracking FSK Signal

Transient behavior of the adaptive filter was studied by applying an FSK

signal (generated via equation 4.11). In the case of an FSK signal, signal spectrum

constantl) ;hanges. This property is useful for testing the tracking ability of the

adaptive filter. In fact a WGN with a' = 1 was also added to the signal. An adaptive

filter then was used to demodulate the signal, by tracking the spectrum. This is

shown in Fig 4.13.

8. Suppressing BPSK Interference

Having seen the performance of the adaptive filter under various conditions,

it is only needed to test under an additional constraint of broad band noise. In this

case, the broad-band signal was swamped by narrow-band interferers and WGN. A

typical broad-band signal is generated by using a BPSK signal generator via equation

(4.8). In this we have used carrier at 0.25 cycle/sample and the chip frequency at 0.125

cycles/sample. The narrow-band interference signals are also generated by using the

same BPSK signal generator, but with different parameters. Interferers are chosen

such that the chip frequency is fixed at -jf. cycles/sample, while carriers were chosen

at ,f,,if, and . cycles/sample. To these interferers and broad-band signal,

a WGN with cr = 1 was added. The composite signal spectrum is shown in Fig 4.14,

indicating the three interferers, broad-band signal, and WGN. This signal was passed

through the adaptive filter. Output of the filter is shown in Fig 4.15. In this figure

it is clear that the interferers were removed by the filter and only the desired signal

was left behind.

9. Model order mismatch

The model order of the algorithm was fixed at 3 while BPSK signals were

generated with 2 interferers i.e. m = 2 and N = 3. Fig 3.16 shows the paiameter con-
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vergence under these conditions and Fig 3.19 shows for r = 1 and N = 3 conditions.

We could notice that free extra parameter(s) wandering due to the mismatch. This

has the effect of notching out the desired signal. This can be solved by deliberately

introducing a known BPSK signal at fixed place.

59



0

0 N0 L.0

m 0)* H 0N -tc

U 4 .crv 0 C

0t -4 $.4 f
C1 m4 O0)0 W )O '

a) to 7N .a )

m *4 14 *th . l*r-44-

S (1 )1 0 ý 0 4 4-
to W N *.4) C:f IC) a 0

6 (ft. (1)W.W. 4 . 0 .~ *-4 t>
0 In 4) % 4) .4 0) .0 %- W

W z *4~ a# () CA 4) m2 k toa O
'0 04 9 .S - j4- -

Z44Z0 -4 4J 0 M. 0 ~'

1.> 4-

fl C*4 4-4-"

600



Summary of Tests on the New Algorithm

TABLE 4.1

Case # of Sines v,i,, v,. Noise zero order 1st order 2nd order
sections II___ er j iter 1 ____ L [iter

la 1 1 0.05 20 no 0.05 67 0.05 20 0.05 20
lan 1 I 0.05 20 yes 0.05 jump 0.05 20 0.05 144
lb 1 3 0.05 20 no 0.05 jump 0.05 30 0.05 25
lbn 1 3 0.05 20 yes 0.05 jump 0.05 50 0.05 100
"2a 5 3 0.10 10 no 0.017 340 0.063 200 0.07 400
2an 5 3 0.10 10 yes 0.017 1200 0.063 400 0.07 450
2b 5 5 0.10 10 no 0.017 1410 0.063 150 0.07 500
2bn 5 5 0.10 10 yes 0.017 3500 0.063 175 0.07 250
2c 5 7 0.10 10 no 0.017 1667 0.063 450 0.07 jump
2cn 5 7 0.10 10 yes 0.017 700 0.063 167 0.07 jump
3a 10 7 0.02 50 " no 0.02 1667 0.075 500 0.07 1500
3an 10 7 0,02 50 yes 0.02 5000 0,075 750 0.07 1000
3b 10 10 0.02 50 no 0.02 7500 0.075 2000 0.07 5250
3bn 10 10 0.02 50 yes 0.02 1000 0.075 2000' 0.07 2500

e In all cases with noise, parameters converge to exact value when number of

notches is greater or equal to number of sinusoids. Iterations listed in table

represent convergence to three decimal places.

* In all cases with noise, parameter oscillate around the exact value. The number

of iterations listed in the table is the number of iterations required to establish

this oscillatory pattern.

* In some cases with more interfering sine waves than notches will jump at random

between sine waves. This pattern is indicated in the table by the word jump.

* Values of v1 ,,, and v,,. in the table refer only to zero-order forgetting which

generally will not converge without limits on v. All other type.s of forgetting

were run without limits on v
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V. HARDWARE IMPLEMENTATION

Although hardware design is beyond the scope of this thesis, in this chapter we

shall briefly look at possible hardware configurations with a view toward feasibility

of the new algorithm.

A. HARDWARE FEASIBILITY

In recent years many dedicated digital signal processing chips have become

commercially available. Table 5.1 gives characteristics of some typical chips that are

currently available.

TABLE 5.1

Feature Commercial Make
MIPS R3010 Weitek 3364 TI 8847 AT&T DSP32c'

Cycle Time(ns) 40 50 30 20
Cycles/add 2 2 2 2
Cycles/mult 5 2 3 2
Cycles/divide 19 17 11 3
Cycles/sq root - 30 14 ?

Data on MIPS R3010, Weitek 3364, and TI 8847 was obtained from the computer

architecture book by Hennesey and Patetrson [Ref. 30] while the data for AT&T

DSP32c is obtained from DSP32c data manual [Ref. 31]. Fig 5.1. gives a schematic

of the 2nd order 1IR filter hardware scheme. It has a coefficient memory which can

be set by an external device. Close examination reveals that Multiplications A can

be performed simultaneously While Multiplication B and. other additions are to be in

sequence. Fig 5.2. is the basic building block for the adaptive filter and is identical for

all the sections. This is offers an advantage in hardware complexity over the Kwan &

Martin approach. Filters 1 and 2 have transfer functions of Hbp(z) while filter 3 has a
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transfer function H,.(z). Throughput rate is primarily determined by the computing

time of the 2nd order IIR filter. The overall block diagram of the adaptive filter for a

3-Notch cancellation was given in Fig 5.3. This architecture remains same either for

a Floating point or Fixed Point arithmetic.

1. Time Budget

In the architecture of Fig 5.1, 5.2, and 5.3 the most vital elements are the

IIR filter, Controller and the Forgetting filter. The IIR filter corresponds to Hbp(z).

The controller has to update the parameter via equation (3.17) which calls for 2

multiplications, 1 addition, and 1 division. Similarly the Forgetting Filter has to

implement equation (3.19) calling for 2 multiplications and 1 addition. Results are

tabulated as given below

TABLE 5.2

Element # of Effective # of Effective # of
Multiplications Additions Divisions

IIR filter 2 3 nil
Controller 2 1 1
Fogetting
Filter 2 1 nil

The maximum computing time is at the fIR filter. Using the AT&T DSP32c proces-

sor, it takes 5x2 = 10 cylces (ie 200ns) for implementation the desired I1R filter. This

corresponds to a Throughput rate of 5Mhz. This is the best that could be achieved

with the existing commercial floating point processors. However processors like the

HDSP661 10 of Honey well make claim an ALU speed of 10ns with block floating point

operations can conveniently implement at 1OMhz throughput rate, without pipelin.

ing the 11R filter. With pipelining the throughput rate would increase dramatically,

but will never exceed the maximum throughput rate of 100Mhz.
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2. VLSI Approach

Taking advantage of the fact that the entire hardware can be generated by

a simple repetitive use of the building block, strong consideration should be given

to designing a VLSI chip for Fig 5.2 rather than implementing the hardware via the

existing commercial chips. The main rationale behind this idea is that reliability

of the system is very important in EW equipment. Also VLSI has the potential of

ultimate-low cost.
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VI. CONCLUSIONS

In this thesis the problem of suppressing narrow-band interference was ad-

dressed. The problem specific to the Electronic warfare scenario was kept in mind

while solving the problem. The new algorithm [Ref. 26] was derived and simulated.

This new algorithm was tested against various signals and signal conditions. The

results are highly encouraging.

Some aspects of pipelining were discussed. Reduced hardware complexity of the

New Algorithm is an important advantage over the earlier algorithm by Kwan and

Martin [Ref. 8]. A possible hardware scheme for implementing the new algorithm

was discussed. It was observed that with the existing commercially available floating

point processors a throughput rate of 5Mhz is achievable while using processors like

HDSP66110 with an ALU speed of iOns it is possible to achieve a throughput rate

of 10Mhz.

A. FUTURE WORK

Future directions of work are

i) VLSI design of the system with an architecture

as indicated earlier or a similar architecture.

ii) Pipelining of 2nd Order 1i11 filter suited for

this application

iii) Design using recursive DFT

The above areas of work are the logical extensions of this work. However a radically

different approach for the same problem using adaptive filtering in frequency domain

[Ref. 10) should also be considered.
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APPENDIX A

dimension faray(5000)
dimension uaray(5000) ,yaray(5000)
dimension fhat(5000),ph(5000)
dimension a(90) ,b(90)
open (unit=9, file='spk.dat ,status='new')

c
"c This programme generates input output
"c sequence by exciting a linear system
"c defined by the numerator polynomial
"c B(z) and denominator polynomial A(z)
"c this data is stored in uarray and yarray
c Subsequently an ARMA (polezero) is used
"c to fit this data.
c

n=1024
ix=l
yk=rand (ix)
ix=O
kk-8

c
c generate sequence uk and yk
c

ip-3iz-2
a(l)-1.7
a(2)--l.53
a(3)-'0.648b(l)-l.o
b(2)-0.6
do 10 k-i,n
call rbn(uk,ix,k)
call system(a,b,ukyk,ipiz,k)
uaray (k) -uk
yaray (k) wyk

10 continue
C
c save the sequence in the arrays uaray and yaray

* c
call spktrm(yaray, faray)

C
c spectrum of the output sequence yaray is computed
c using FFT programme and stored in faray for
c comparision
C

ip-4

i cC
"c Fit an APMA(ip,iz) model for the given data
"c this is an ordinary least squares algorithm
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c print *, 'input-ip-iz-->'
read *,ip,iz
do 20 k=1,n
uk=uaray (J)
yk=yaray (3)
call arma(a,b,uklyk,ip,iz,kk~k)

c print *,'flum->',(b(i),iPl,iz)

20 continue
print *,'num->',(b(i),i-l,iz)
print *, 'den->', (a(i) ,i-I,ip)

C
* Samplinq of the Z-transform. given

c coefficients a .... and b...
c corresponding H1(z) - Bfz)/A(z)
* is evaluated on the urnit circle
* for obtaing U-be parametric spectrum
c

call zampleCa~b, fhat,ph, ip, iz)
C
c

do 30 i-lon/2
o print *,i,2'-->',fhat(i),faray(i)

write (9,*) i~fhat~i),faray(i)
30 continue

stop
end

0

subroutine zsmple(a,b~r,ph, ipjiz)
dimension a(90) ,b(90)
dimension r(2048) ,ph(2048)
complex z,ui,fn, fd,,omega,,delvwspec
pi-atan(I.0)
pi-4 .0*pi
Uift(0. 0 *1.0)
delv*s(pi/1024.0) *ui*2.0
omega"(0.0,00.)
do 100 k-1,1024
zwexp (-omega)
fd- (O0*0,0.0)
do 10 i-l~ip

10 fdm~fd+a (ij*z*-)
Id-1. 0-fd
fnsaO .0, 00)
do 20 i-ijz

20 fnftfn+b(i)*(z**(-i))
spec- tn/fd
r(k)-abs (spec)
spoor-real (spec)
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speci=aimag (spec)
ratio-speci/specr
ph (k) =atand (ratio)
omega-omega+delw

c print *,'--z-om->',z,omega
100 continue

return
end

C
c

function atand(x)
pi-atan (1. 0)
pi=4.0*pi
xrad-atan (x)
atanduxrad* (180. 0/pi)
retuarn
end

c
c

subroutine rbn(b, ix,k)
z-rand(ix) -0.5
if(z.ge.0.0) b-1.0
if(z.lt.0.0) bu-1.O
return
and

C
c

subroutine systez(a~b,uk~yk,ip~iz,k)
dimension

& zkar(90) ,tkma(90),
& a(90)0b(90)
if (k~nel) go to 250
do 230 iwioip

230 zkar(i)w-00
do 240 i-1,ia

240 zkma(,t)-0.0
250 continue

do 30 iwipO,2-I
30 zkar(i)-zkar(i-1)

zkar(1)*,yk
* do 31 i-it,2o-l

31 zkma(i)wzkina(i-1)
Zkma (1) -uk

c
c

yktO. .0
do 200 iml,ip

200 yk-yk+a(i)*zkar(i)
do 210 i-lA:z

210 yk-yk~zkm&(i) *b(i)
return
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end
C
C

subroutine delay(uk,yk, idelay,k)
dimension d(500)
if (k.ne.1) goto 10
do 20 i=1,500

20 d(i)-0.0
10 continue

do 30 1-500,2,-1
30 d(i)=d(i-1)

d (1) -uk
yk-d (idelay+1)
return
end

C

C
subroutine spktrm(taray, faray)
complex u(5000)
dimension taray(5000),faray(5000)W-10
n=1024
rn-n
do 20 i-ln
u (i) vtarayii)

20 continue
call pfft(umn)
do 30 i-ln/2
faray(i)wreal(u(i))

30 continue
return
end

C
C

C

c Subroutine for computing DFT of *
c an array 'a' is complex and a pair
c of numbers are to be specified
C for each point *
c a is the 2 power index *
C say ralO then number of points *
C are 1024 *
C after computation fft is kept
0 In the same complex array 'a' a
o *

subroutine pfft(aumn)
complex a(5000) ,ujv,t
complex ui,ur
pi-3.141592653589793
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ni=2 * *la
riv2=n/2
nra1~n- 1
J=1
do 10 i=1,nral
if(i.ge.j) goto 20
t=a(j)
a Ci)=a (i)
a (i) =t

20 k=nv2
30 if(k.ge.)) goto 10

J=J-k
)c=k/2
goto 30

10 J=j+Jc
do 40 1=1,m
le=2**l
1 e 1=e/ 2
u= (1. 0,10.0)
w=cmplx(cos(pi/lel) ,-sin(pi/lel))
do 40 J=1,lel
do 50 i=j,n,le
ip=i+lel
t=a(ip) *u
a (ip) =a (i) -t

40 u=u*w
rn=n/2
uN= (0. 0, 11. 0)
ur= (1. 0,0. 0)
do 60 i=1,n/2
a(i)=a(i)/rn
a(i+512)=a(i+512)/rn
areal=real(a(i))
aimgn=aimag(a(i))
amagn=abs(a(i))
aphase=atand (aimgn/areal)
a (i) =ur*amagn+ui*aphase
areal=real(a(i+512))
aimgn=~aimag(a(i+512))
amagn=abs (a (i+512))
aphase=atand (aimgn/areal)
a (i+512 ) ur*amagn+ui*aphase

60 continue
return
end

C
C

subroutine arma(a,b~uk,yk,ip,iz,kk,k)
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dimension
& zkar(90) ,zkma(90),
& zk(90),a(90),b(90),c(90)
If (k~nel1) go to 250
n=ip+iz
ipp=ip+ 1
do 230 i=i,ip

230 a(i)=0.1
do 240 i~1,iz

240 b(i)=01l
250 continue

do 30 i-ip,2,-1
30 zkar(i)=zkar(i-1)

zkar (1)=ykold
ykold=yk
do 31 i~iz,2,-1

31 zkma(i)=zkma(i-l)
zkma (1)=uk
do 32 i=11ip
c(i)=a(i)

32 zk(i)=zkar(i)
do 33 i=1,iz

33 zk (i+ip) -zkma (i)
call syseq(c,yk,zk,n,kkik)
do 34 i=l,ip

34 a(i)=c(i)
do 35 i-1,iz

35 b(i)=c(i+ip)
return

end
C
C
C

subroutine syseq(a,yk,zk,n,kklk)
c
C
c solves system of equations with
Ci # of equations more than unknowns
c using linear reggressiorn.
C t
c equation is yk=zk * a
c where 'a' ls n vector to be estimated.
c
C
C

dimension
&del(90),phat(90,90),zk(90),y(90),a(90)

it (k.ne.l) go to 250
alpha=l.0

250 continue
call inv(phat~zk,alpha~n,kk,k)
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ykhat=0. 0
do 40 i=1,n

40 ykhat=ykhat+zk(i)*a(i)
er--yk-ykhat

do 60 i=1,n
60 y(i)=er*zk(i)

do 80 i=1,n
del(i)=0.0
do 80 J=1,n

80 del(i)=phat(i,j)*y(j)+del(i)
if(mod(k,kk).ne.0) goto '70

c print *,' --- >',k
c print 100, ((phat(i,j),i,=1,n),J=1,n)
c print 130, (del(i),i=1,n)
c print 160,er
c print 170, (zk(j),J=1,n)
70 continue

do 50 i=1,n
50 a(i)=a(i)+del(i)
100 formuat(2x, 'phat' ,2x,/,4e16.6)
120 format(2x, 'zk' ,2x,/,4e16.6)
130 format(2x, 'del',2x,/,4e16.6)
160 format(2x, 'ekl',2x,e16.6,/)
170 format(2x, 'zk',2x,/,4el6.6)

return
end

C

subroutine inv(phat, zk,alpha,n,kk,k)
dimension phat(90,90),zk(90),q(90),r(90),delp(90,90)
if(k.ne.1) goto 5
do 6 i=1,n
do 6 J=1,n

if(i.ne.j) phat(i,j)=0.0
6 contnue~j htij=

6 continue

do 90 i=1,n
do 90 J=1,n
phat(i,j)=phat(i,j)/alpha

90 continue
L do 10 i=1,n

q(i)=0.0
do 10 J-1,n

10 q(i)=phat(i,j)*zk(j)+q(i)
slZ=1. 0

do 20 i-l,n
20 sum=sum+zk(i)*q(i)

do 30 J=1,n
r(j)=0.0
do 30 i~1,n

30 r(j)=phat(i,j)*zk(i)+r(j)
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do 40 j=1,n
do 40 i=1,n

40 delp(i,j)=q(i)*r(j)
do 50 J=1~n
do 50 i=1,n

50 phat(i,j)=phat(i,j)-(delp(i,j)/sum)
return
end
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APPENDIX B
C
c simulation of michal paper IEEE
c

dimension akil() ,ak2(l0) ,s(10) ,xout(10) ,theta(10)
dimension aks(10) ,wp(l0) ,ak3(10)
dimension array(4, 4000)
open ( unit=9,file= 'martin.dat' ,status='new')
open( unit=8, file-'mart.dat' ,status~'new')
print *, '-input-SNR-in-dB --- >1
read *,snr

"o if (snr.ne.0) goto 200
"o var=0.5
c goto 210

var=l.O/(2.0*(10.0**(snr/10.0)))
210 continue

* ~print *, '--variance-->' ,var
n=1
print *, '-input-nh-->'
read *,n
print *, '-input-#-of -waves-->'
read *,nd
print *, '-input-angles-->'
read *, (theta(i) ,i=1,n)
r=0.*9
pi-4.0*atan(1.0)
rad-pi/iBO. 0
amu=0.0

c do 50 kl-1,50
amu-O. 015
print *, '-input-step-size-- 0.015-->' ,amu
read~ *,amu
print *, '--angles-->',(theta(i) ,i-l,n)
print *, '--input--l-for-step-changQ--else-0-->'
read *,ic
if (ic .eq. 1) print *, --i~nput-step..in.de-grees..->1
if (ic.eq.1) read **step
do 40 i-1,n
ak2 (i)-(Il-r* r)

* ~ux-theta (i) *rad
value-cos (ux)

c akl(i)imdl*sqrt(l.0+r*r-2*0*r*value)
aki (i)osqrt(1. 0+r*r)
aks (i) -sqrt (1 * +r*r-2 .0*r*value)

40 continue
c amu-amu+0.0001

do 10 kolt6500
call systein(yk,wk~theta~step~var~ic~nd,k)
call filters(akl,ak2,aks,s,en~xout~yk,n,k)
call increment(akl,ak2,aks, s,entauu,avgon~k)
do 30 i-1,n
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xx=2.0*sqrt(1-0.5*ak2 (i))

c wp(i)=wp(i)/rad
WP M)Z-Cos (Wp iM

30 continue
do 60 i=1,n
ak3(i)=abs(akl(i))

60 continue
kk=mod(k, 100)
1l--mod(k, 10)
if(Jck.eg.0) print *,'--akl-->',(ak3(j),j~l,n)
if(ll.eq.0) write(9,*) k,(ak3(j),J=1,n)
if(kk.eq.0) print *,'--aks-->',(aks(j),J~1,n)

"c if(kk.eq.0) print *,k,'-avg->',avg
"c print *,(wp(i),i1l,n)
"C write(9,*) )c,(wp(i),i=l,n)

if(k.gt.1500.and.k.1t.2500) write(8,*) k,yk~en
if(k.gt. 5000.and.Jc. t.6000) write(8, *) k,yk,en

10 continue
"c print *, kl,amu,avg
"c write(9,*) kl,amu,avg
50 con~tinue

close (9)
stop
end

c

c
subroutine inc'rement(akl,ak2 ,aks,s,en,amau,avg,n,k)
dimension akl(10),ak2(10),aks(10),s(10),ss(l0)
dimension dec(l0) ,flag(10) ,fading(10)
if (k~ne.1) goto 30

c amu-0.001
avg=0.0
fading(l)=0.9
fading(2)=0.9
f ading (3) =0. 9
fading(4)-0.9

30 continue
do 10 i~l,n

10 continue
c do 31 i=1,n
c31 print *,I-en-s-ss->I,en,s(i),ss(i)
"c sum=0.0

do 20 i=1,n
deo(i)-amu*en*s(i)/(ss(i)+0. 0001)
ak1(i)=ak1(i)-dec(i)

"C sum-sum+(abs(aks(i)-akl(i)))/(aks(i))
call stability (aki,k,fa, n)
ak1(i)-akl(i)+flag(i) *dec(i)

20 continue
realk-k
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avg=avg* ((realk-1. 0)/realk) +suin/realk
return
end

C
C
C

subroutine filters (akl,ak2 ,aks,s~en,xout,xin,n,ki)
dimension w(10,3),a(l0,2),b(10,2),e(1l),xbp(10)
dimension g(10,3) ,gbp(l0) ,u(lO)
dimension q(1O,3),s(1O),xout(lO),c(1O)
dimension akl(10) ,ak2(lO) ,aks(l0) ,as(10)

C
if (ki.nel1) goto 200

Cc open( unit=9,file='martin.dat' ,status-'newl)
200 continue

i-n
do 40 i=l,n
a(i1l)=-(akl(i)*akl(i)+ak2(i)-2.0)
as (i) =-(aks(i) *aks Ci) +ak2 (i) -2 .0)
a(i,2)=-(1.0-ak2(i))
b(i1l)=-0.5*ak2(i)
b(i,2)=0.5*ak2 (i)
c(i)=-akl(i) *ak2 (i)

40 continue
c do 41 i=1,n
c print *,'-kl-k2->',akl(i),ak2(i)
c41 print *,----Iail,~,)bil,~,)ci
C
C

e(l)=xin
i-n
do 10 J=l,n
w (i, 3) =w (i,2)
w (1. 2) w (1i 1)
w(i,l)=a(i,l)*w(i,2)+a(i,2)*w(i,3)+e(j)
xbp (j )%-b(, 1) ( i,1) +b ( i1 2) *vw( i,3)
e (j+ 1) -xbp (j )+e Ci)
i-i-i

10 continue
en-e (n+1)

i-n
do 20 k=1,n

u (k) -en-xbp (k)
g (i, 3) -g(i ,2)
9(it2) -gi,1)
g(i,1)-a(i~l)*g~i,2)+a(i.2)*g(i.3)+u(k)
gbp(k)-b(i.1) *g(i,1)+b(i,,2)*g(i#3)

q(k#3)-q(k,2)
q (k #2)-q (k j 1)
q(k,1)-a(i,l)*q(k,2)+a(i,2) *q(k,3)+gbp(k)
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s(i)=c(i)*q(k,2)
i=i-1

20 continue
kk--mod~i, 10)

"C if(kk.eq.O) write(9,*) ki,en,a(,1l),as(1),a(2,1)fas(
2)

"C if(kk.eq.0) print *, ki,(a(i,1),i=1#n)
"C if(kk.eq.0) print *, ki,(as(i),i=l,fl)
"c if(ki.ge.1800) write(91*) )ci,e(1),efl,xbp,(1),a(l,1),as(1)
"c if(ki.ge.1800) print k,)i,e(1),en,xbp(1),a(1,1),as(l)

return
end

C
C
C

subroutine systemý(yk~wk,thetagsteptvart ic,n~k)
dimension theta(l0) ,yout(10) ,yz(10)
if (k~ne.1) goto 100

100 continue
* call bpf(theta,yz.fl~k)
* call waves(theta~yout,n~k)

call file(yk,theta,Btep,ici,nk)
sum-0 .0
wk-0 .0
do 10 iwl,n
sumu-sum+yollt (i)
wk-wk+yz (i)

10 continue
call gnoise(govarok)

"c yk-sum~g
"c yk-wk+g

yk-yk+g
return
end

C

subroutine waves (theta1 youton, k)
dimension zkar(l0,3),thsta(1O),yout(lO)#&lfIO)
if(k.ne.1) goto 10
pi-(atan(1.O) )*4.0
rad-pi/18O. 0
do 20 iw1.n

zkar(i,2)au-Bifl(theta(i) 'rad)
a1(i)-2.0*cos(theta(i) *rad)

20 continue
10 continue

do 30 i-i~n
zkar(i.3)-zkar(i,2)
zkar(i,2)"'zkar(i. 1)
zkar(i1l)-.lf(i)*zkar(ie2)-zkar(ie

3)
yout(i)-zkar(i.X)

30 continue
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return
end

C

subroutine gnoise (g, s,k)
if(k.ne.1) goto 10
ix=1
yfl=rand (ix)
ix=0

10 continue
sum=0.0
do 20 i=1112
yf 1-rand (ix)

F 20 sumusum+yf 1
g=(SUM-6. 0)*
return
end

C
C

subroutine stability (ak , ak2, flag, n)
dimension akl(10).ak2(10),flag(10).a(10.2)
do 30 i-l,n
flag(i)-.0.

a(i,2)--(1.0-ak2(i))
desua(i.1)*a(i,1)+4.0*a(i.2)
if (desl1t.0.0) goto 10
des-0. 5*sqrt (des)
rootimo.5*a(i 1)+des
ri-abs (root3.)
root2=O.5*a(i, 1) des
r2wabs (root 2)
if (rl.ge.1.0) goto 20
if (r2.qe.1.0) goto 20

c print *, '-real-roots--> *rootl,root2
goto 30

20 flag(i)-l.0
goto 30

10 des--des
* ~yiO.S*sqrt(des)

Xm0.5*atiill)
xx-abs (x)
if (xx.le.l.Oe-6) x-0.0O000001
angle- (atan (y/x) )*57.*3
radiuswsqrt (x*x+y*y)

c print *, '--complex--roots--> 'rdis anl
if(radius.ge.1.0) goto 20

30 continue
return
and

c
C

81



subroutine bpf(theta,yout, n,Jc)
dimension zkar(10,3) ,a(10,3) ,zkma(1O,4) ,b(10,3)

dimension theta(10),g(10),,yin(1O) ,yout(1O),uk(10)
if (k.ne.1) go to 10

rad-pii'180.0
do 15 i=1,n
zkar(i,l)-0.O

15 zkar(i,2)-0.0
r-0.985

"C prin~t ,'O--input--r-->I,r
"c read *,r

do 25 iml~n
a(i,1)-l
a(i,,3)-r*r
g(i)umO.5*(1-r*r)

b(io3)--g(i)
a(i.2)-2*r*cos(theta(i) *rad)

25 b(it2)u0.0
10 continue

save-var
do 35 i-l,n
var-2.0
call qnoise(gk~var,k)
yin(i)-gk
zkar(i,3)ozkar(i,2)
zkar(i.2)ozkar(i1l)
zkna (i v3) -zkma (i t2)
zkma(i,2)-zkma(i11)
zkma (1i1) -yin (i)
uk(i)-zkma(il)*b(i, l)-zkma(i,2)*b(i,2)+zkma(i.3) *b(i,3)
zkar(i 1 1)mzkar(i,2)*a(i,2)-gkar(i,3)*a(i.3)+uk(i)'

"c print *r'-fil->Safilthetatr
"c print *'.fl-'za
35 yout(i)-zkar(il1)

var-save
Teturn
end

C $$$$$$$$$$$$$$$$$$$
c

subroutine file(yk,theta,step~ ic,n,k)
dimension output(8000) ,ttieta(I0)
if (k.ne.l) goto 10
call qendata(output~theta~atep~ic,ntk)

10 continue
yk-output (k)
return
end
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C
C
C

C
subroutine gendata (output,tht,step, ic, nn,k))
DIMENSION YSAMP(65536) ,data(4,B000) ,output(8000)
dimension theta (10)

c OPEN (UNIT-9,FILE='bpsk.dat' ,STATUS='k4EW')
n=7 000
amaag-1.414
tcarr-4 .8
tchip-7.0
ichip-0
tdata-n
tclelay-0. 0
1-9999
tc.hip-2 00.0
do 10 i-I~nn
tcarr-360 .0/theta (i)
call bpsk(n,amag~tcarr~tchip~ichip,tdata,tdelay,l,ysawp)
do 20 J-1,n
if (ic.eq.0) goto 80
if (i~eq.2) goto 50
data(i,j)-ysamp(j)
goto 60

so if (Jqgt.3000) ysampfjfu'0.0
80 data(i,j)'mysamp(j)
60 continue
20 continue

print *,i't-->',theta(i),,tcarr
10 continue

tcarr-360 .0/90.0
tchip-~8. 0
call bpsk(n~amag,tcarr,tchip,ichip,tdata,tdelay~l,ysamp)
do 30 iml,n

do 40 J-1,nn
40 xmx+data(j,i)

output(i) WK+ynaulp(i)
c vrite(9,*) x
30 continue

if (ic.eq.0) return
n1'an-300O
tchipm2 00.0
theta 1-theta (2) +step
tcarr-360.0/thetal
call bpsk(nl,amag,tcarr~tchip, ichip,tdata,tdelay,1,ysamp)
i=i
do 70 i=3000,n
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output(i) -output (i) +ysamp (j)
J-J+1

70 continue
c close(9)

return
end

C

c this programme was modified to suit the martin
c programme

subroutine bpsk
S & (namagtcarrtchipichip,tdata,tdelay,11,ysamp)

c
c

C THIS PROGRAM GENERATES SAMPLES OF A DIRECT SEQUENCE BI-PHASE
SHIFT
C KEYED SPREAD SPECTRUM SIGNAL. THE "INFORMATION" BITS AND THE
C SPREADING SEQUENCE USED ARE RANDOMLY GENERATED. PARAMETERS
REQUIRED
C FOR OPERATION ARE:
C N - NUMBER OF SAMPLES GENERATED
C FOR CONSISTENCY WITH USE BY AN FFT
C ALGORITHM, N SHOULD BE AN INTEGER
C POWER OF 2 - TYPICALLY 1024
C NOTE: IF N>1024 DIM OF YSAMP MUST CHANGE
C HAG a MAGNITUDE OF CARRIER WAVEFORM
C TSDELAY - NUMBER OF SAMPLE TIMES DELAYED FROM
C t a 0 BEFORE BEGINNING SAMPLES
C AN ARBITRARY VALUE THAT ALLOWS SOME
C FLEXIBILITY IN SAMPLING. SHOULD BE
C ZERO FOR SAMPLING AT t-O.
C TDATA - NUMBER OF SAMPLE TIMES IN ONE DATA BIT
C TCHIP a NUMBER OF SAMPLE TIMES IN ONE BIT OF
C SPREADING CODE
C TCARR - NUMBER OF SAMPLE TIMES IN ONE CYCLE OF
C CARRIER FREQUENCY
C TSAMP m DURATION OF A SAMPLE TIME. IN GENERAL
C TSAMP WILL ALWAYS BE - 1.0t SINCE
C TIME SAMPLED VALUES BECOME STATIC
C WHEN STORED AND CAN BE SCALED LATER.
C
C THE ALGORITHM USED TO GENERATE THE DS-BPSK SIGNAL RELIES UPON
THE
C BUILTIN FORTRAN RANDOM NUMBER GENERATOR RAND(L) TO PRODUCE THE

C INFORMATION BIT STREAM AND THE SPREADING SEQUENCE CODE. AT
THE TIME
C OF EACH SAMPLE, THESE TWO BITS ARE MODULO 2 ADDED TO PRODUCE
A CHIP
C BIT. THIS BIT IS THEN USED TO SHIFT THE PHASE OF THE CARRIER
BY
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C 180 DEGREES IF 1 OR BY 0 DEGREES IF 0. THE RESULTANT VALUE OF
THE
C COSINE FUNCTION IS MULTIPLIED BY THE AMPLITUDE OF THE
WAVEFORM, THEN
C STORED IN FILE BT.DAT IN THIS FILE DIRECTORY. THE PROCESS IS
CONTIN-
C UED UNTIL N SAMPLES ARE GENERATED. NOTE THAT FIRST LINE OF
BT. DAT
C CONTAINS N, DSBPSK, DATE AND TIME AS ID FIELD FOR FILE.
C
C W.R.TUCKER 9-MAY-83
C CONVERTED PROGRAM TO ALLOW FOR M-SEQUENCE CHIP
C M-SEQUENCE GENERATOR REQUIRES DATA FILE FSR.DAT WITH
C PARAMETERS FOR FEEDBACK SHIFT REGISTER.
C W.R.TUCKER 4-AUG-83
C
C INITIALIZE -- I - INFO BIT NUMBER, J - SP SEQ CODE BIT NUMBER
C L IS ARGUMENT FOR RAND(L)--A DIFFERENT SEQUENCE MAY BE
C GENERATED BY INITIALIZING L WITH DIFFERENT VALUES.
C
C Modified by HHL for installation on ULTRIX ECE VAX, 12/90
c Writes output in file bpsk.dat
C

DIMENSION YSAMP(65536)
INTEGER IJLINFO*CHIPIFSR,IFBD(100) ,IVAL(100)
REAL TDATA, TCHIPTCARR, TDELAY ,TSAMP, MAG, YARG, YSAMP, PI
-PI w 3.14159265
TSAMP - 1.0
1. 0
J 0
L 0
WRITE(6,900)

900 FORMAT(* GENERATION OF DIRECT SEQUENCE BPSK SIGNAL,
A 4 IN FILE bpsk.dat')
WRITE(6, 1000)

1000 FORMAT(' 9 SAMPLES TO GENERATE
c READ(S, *)N

print *,n
WRITE(6,1001)

1001 FORMAT(# MAX AMPLITUDE OF SAMPLE VALUES (R)= ,$)
c READ(S, *) MAG

print *,3ag
WRITE(6,1002)

1002 FORMAT( # SAMPLES PER CARRIER CYCLE (R)- '.$)
c READ(5, *) TCARR

print *,tcarr
WRITE(6O 1003)

1003 FORMAT(' I SAMPLES PER CHIP BIT (R) ',$)
c READ(5, *) TCHIP

print *,tchip
WRITE(6, 1020)

85



1020 FORMAT(C ENTER (0) :RANDOM CHIP, OR (1)'REPEAT M-SEQ CHIP

c READ(5, *) ICHIP
print *,ichip
WRITE (6,1004)

1004 FORMAT(' # SAMPLES PER INFO BIT (R)
c READ(5, *) TDATA

print *,tdata
WRITE(6,1005)

1005 FORMAT($' DELAYS BEFORE SAMPLING (R)- o,$)
c READ(5, *)TDELAY

print *,tdelay
WRITE(6,1006)

1006 FORMAT(' RANDOM NUMBER SNED (14)---> ',$)I 1-11
* READ(5, ))L

print *,1
* Initialize RAND by calliing with input non-zero L.
o Subsequent calls will be with L - 0.

RANDOM- (L)
c deki
C WRITE(6,*) t SEED AND RANDOM NUMBER RETURNED: '1,L, RANDOM

LAO
WRITE(6, 1010)

1010 FOR•AT(/(I X, ------ --- eeee -WORKING -------- -- -- )
IF (ICHIP .EQ. 0) GO TO 5
OPEN (UNIT 1 1, FILE- °FSR.DATI, STATUS - 'OLD')
READ (1,500) IFSR
READ (1,600) (IFBD(K) ,K a 1, IFSR)

500 FORMAT(I3)
600 FORMAT(13)

CLOSE (UNIT 1)
DO 5 K m 1, IFSR
IVAL(K) a 1

5 CONTINUE
DO 100 K m 1,N

C CHECK TO SEE IF WE NEED TO GENERATE A NEW DATA BIT
IF ((K+TDEIAY)*TSAMP .4T. I*TDATA*TSANP) GO TO 10

C IF SO DO IT HERE
RANDOM - RAND(L)

c debug
C WRITE(6,') I IFIAG AND RANDOM NUMBER RETURNED:',LRANDOM

INFO * 0
IF (RANDOM .GT. 0.5) INFO - I

C KEEP TRACK OF WHICH DATA BIT WE ARE ON
I - 1+1

10 CONTINUE
C NOW CHECK TO SEE IF WE NEED TO GENERATE A NEW CHIP BIT

IF ((K+TDELAY)*TSAMP .LT. J*TCHIP*TSAMP) GO TO 20
IF (ICHIP NE. 1) GO TO 15
CHIP - IVAL(IFSR)
CALL MSEQ(IFSR, IFBDIVAL)
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GO TO 19
15 CONTINUE
C IF SO DO IT HERE

RANDOM = RAND(L)
CHIP - 0
IF (RANDOM .GT. 0.5) CHIP - 1

C KEEP TRACK OF THE CHIP BIT NUMBER
19 CONTINUE

J - J-41
20 CONTINUE
C NOW WE DETERMINE THE PHASE SHIFT

PHASE - FLOAT(MOD(INFO + CHIP,2))
C COMPUTE THE ARGUMENT FOR THE COSINE FUNCTION

YARG - 2.0*PI*(I.0/(TCARR*TSAMP))*(K+TDELAY) + PI*PHASE
YSAMP(K)- MAG * COS(YARG)

100 CONTINUE
C NOW SAVE THE VALUE
c ranga OPEN (UNIT=1,FILE-'bpsk.dat',STATUS-i'NEW')
c CALL DATE (BDATE)
c CALL TIME(CTIME)
c-ranga WRITE(l,125)MN,P.G, TCARRTCHIP,TDATA
125 FORMAT(15,SXF4.I, 1OH*DSBPSK+M2 ,F7.2,lHf F7.2, lHcF7..I,

* iHd)c-r.anga -WRITE(I, 150) (¥SAMW(l),I-IN)

do 121 iwl,n
c write(l,*) ysamp(i)
2121 continue

150 FORMAT(8F16.8)
CLOSE (UNIT-i)
return
END

SUBROUTINE MSEQ(IFSR, XFDB, IVAL)
C THIS SUBROUTINE PERFORMS THE SHIFTING OPERATION OF AN IFSR
STAGE
C FEEDBACK SHIUT REGISTER, WITH FEED BACK CONNECTIONS AS
INDICATED
C BY IFDB. IVAL IS THE INITIAL CONTENTS OF THE FSR AND WILL
CONTAIN
C THE FINAL CONTENTS AFTER SHIFTING.
C W.R. TUCKER 4 AUG 83

INTMGER 1FDB(IFSR), IVAL(IFSR)
ISUM - 0
DO 10 1 - I, IFSR
ISUM - IFDB(1) * IVAL(I) + ISUM

10 CONTINUE
IBIT a MOD(ISUM,2)
DO 20 I *, It XFSR - I
IVAL(IFSR + I - I) - IVAL(IFSR - I )

20 CONTINUE
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IVAL(1) = IBIT
RETURN
END

C
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